THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2017–2018) Introduction to Topology Exercise 4 Continuity

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Do the exercises mentioned in lectures or in lecture notes.
- 2. Is it possible to find the following example? Justify your answer. Let $f: X \to Y$ be a continuous function between two metric spaces and $B_k, k \in \mathbb{N}$ be closed subsets in Y such that $\bigcup_{k=1}^{\infty} B_k$ is still a closed set. However, $\bigcup_{k=1}^{\infty} f^{-1}(B_k)$ is not closed in X.
- 3. Let $f: X \to Y$ be a continuous mapping. If $D \subset X$ is dense, is $f(D) \subset Y$ dense? What about the pre-image of a dense set?
- 4. Let $X = \bigcup_{\alpha} A_{\alpha}$ and each A_{α} be closed such that at every point $x \in X$, there is a neighborhood U of x that only intersects finitely many of A_{α} . Show that if each $f|_{A_{\alpha}}$ is continuous, then f is continuous on X.

Remark. Such a family of A_{α} is called *locally finite*.

5. Apply the Tietz Extension Theorem (lecture version) to show that a continuous function $f: A \to \mathbb{R}$ on a closed subset of a metric space X can be extended to $\tilde{f}: X \to \mathbb{R}$.

Hint. Note that \mathbb{R} and (-1, 1) are homeomorphic.

- 6. Is it possible to extend a continuous mapping $f: A \to \mathbb{R}^n$ on a closed subset of a metric space X? What if the target is \mathbb{S}^n ?
- 7. Give an example of $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ which cannot be extended to \mathbb{R}^2 .
- 8. Give an example of $f: X \to Y$ which is 1-1 and continuous but X is not homeomorphic to its image f(X) as a subspace of Y.